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Abstract. I discuss recent advances in the understanding of non-equilibrium gauge field dynamics in plas-
mas which have particle distributions which are locally anisotropic in momentum space. In contrast to
locally isotropic plasmas such anisotropic plasmas have a spectrum of soft unstable modes which are
characterized by exponential growth of transverse (chromo)-magnetic fields at short times. The long-time
behavior of such instabilities depends on whether or not the gauge group is Abelian or non-Abelian. I
will report on recent numerical simulations which attempt to determine the long-time behavior of an
anisotropic non-Abelian plasma within hard-loop effective theory. For novelty I will present an interest-
ing method for visualizing the time dependence of SU(2) gauge field configurations produced during our
numerical simulations.

PACS. 11.15.-q Gauge field theories – 11.10.Wx Finite-temperature field theory – 52.35.Qz Microinsta-
bilities (ion-acoustic, two-stream, loss-cone, beam-plasma, drift, ion- or electron-cyclotron, etc.)

1 Introduction

One of the mysteries emerging from the RHIC ultrarela-
tivistic heavy-ion collision experiments is that the matter
produced in the collisions seems to be well described by
hydrodynamic models. In order to apply hydrodynami-
cal models the chief requirement is that the stress-energy
tensor be isotropic in momentum space. Additionally, cur-
rent hydrodynamic codes also assume that they can use
an equilibrium equation of state to describe the time evo-
lution of the produced matter. Therefore, the success of
these models suggests that the bulk matter produced is
isotropic and thermal at very early times, t < 1 fm/c.
Estimates of the isotropization and thermalization times
from perturbation theory [1], however, indicate that the
time scale for thermalization is more on the order of
t ∼ 2–3 fm/c. This contradiction has led some to con-
clude that perturbation theory should be abandoned and
replaced by some other (as of yet unspecified) calcula-
tional framework. However, it has been proven recently
that previous perturbative estimates of the isotropization
and equilibration times had overlooked an important as-
pect of non-equilibrium gauge field dynamics, namely the
possibility of plasma instabilities.
One of the chief obstacles to thermalization in ultra-

relativistic heavy-ion collisions is the intrinsic expansion
of the matter produced. If the matter expands too quickly
then there will not be time enough for its constituents
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to interact before flying apart into non-interacting parti-
cles and therefore the system will not reach thermal equi-
librium. In a heavy-ion collision the expansion which is
most relevant is the longitudinal expansion of the matter
since at early times it is much larger than the transverse
expansion. In the absence of interactions the longitudi-
nal expansion causes the system to quickly become much
colder in the longitudinal direction than in the transverse
direction, 〈pL〉 ¿ 〈pT 〉. We can then ask how long it would
take for interactions to restore isotropy in the pT -pL plane.
In the bottom-up scenario [1] isotropy is obtained by
hard collisions between the high-momentum modes which
interact via an isotropically screened gauge interaction.
The bottom-up scenario assumed that the underlying soft
gauge modes responsible for the screening were the same
in an anisotropic plasma as in an isotropic one. In fact, this
turns out to be incorrect and in anisotropic plasmas the
most important collective mode corresponds to an insta-
bility to transverse magnetic-field fluctuations [2]. Recent
works have shown that the presence of these instabilities is
generic for distributions which possess a momentum-space
anisotropy [3,4] and have obtained the full hard-loop ac-
tion in the presence of an anisotropy [5].

Here I will discuss numerical results obtained within
the last year which address the question of the long-time
behavior of the instability evolution [6–9] within the hard-
loop framework. This question is non-trivial in QCD due
to the presence of non-linear interactions between the
gauge degrees of freedom. These non-linear interactions
become important when the vector potential amplitudes
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Fig. 1. Visualization of the spacetime dependence of the color-
absolute value of the x-component of the induced current ob-
tained from a 1+1-dimensional simulation.

become 〈A〉soft ∼ psoft/g ∼ (gphard)/g, where phard is the
characteristic momentum of the hard particles. In QED
there is no such complication and the fields grow expo-
nentially until 〈A〉hard ∼ phard/g at which point the hard
particles undergo large-angle scattering in the soft back-
ground field invalidating the assumptions underpinning
the hard-loop effective action. Initial numerical toy models
indicated that non-Abelian theories in the presence of in-
stabilities would “Abelianize” and fields would saturate at
〈A〉hard [6]. This picture was largely confirmed by simula-
tions of the full hard-loop gauge dynamics which assumed
that the soft gauge fields depended only on the direction
parallel to the anisotropy vector and time [7]. However, re-
cent numerical studies have now included the transverse
dependence of the gauge field and it seems that the result
is then that the gauge field’s dynamics changes its behav-
ior from exponential to linear growth when its amplitude
reaches the soft scale, 〈A〉soft ∼ phard [8,9]. This linear
growth regime is characterized by a cascade of the energy
pumped into the soft scale by the instability to higher-
momentum plasmon-like modes [10]. Below I will briefly
describe the setup which is used by these numerical sim-
ulations and then discuss questions which remain in the
study of non-Abelian plasma instabilities.
In sect. 4 I will present the method which is used

to generate fig. 1 which shows the spacetime depen-
dence of SU(2) gauge field configurations obtained from
a 1+1-dimensional simulation of an anisotropic quark-
gluon plasma. Due to the coarseness of our current 3+1-
dimensional lattice simulations I will present only visual-
izations coming from 1d lattice simulations, however, the
method is easily adapted to the 3+1-dimensional case.

2 Discretized hard-loop dynamics

At weak gauge coupling g, there is a separation of scales in
hard momenta |p| = p0 of (ultrarelativistic) plasma con-
stituents, and soft momenta ∼ g|p| pertaining to collective
dynamics. The effective field theory for the soft modes that
is generated by integrating out the hard plasma modes at
one-loop order and in the approximation that the ampli-
tudes of the soft gauge fields obey Aµ ¿ |p|/g is that

of gauge-covariant collisionless Boltzmann-Vlasov equa-
tions [11]. In equilibrium, the corresponding (non-local)
effective action is the so-called hard-thermal-loop effec-
tive action which has a simple generalization to plasmas
with anisotropic momentum distributions [5]. The result-
ing equations of motion are

Dν(A)F
νµ = −g2

∫
d3p

(2π)3
1

2|p| p
µ ∂f(p)

∂pβ
W β(x;v) ,

Fµν(A)v
ν = [v ·D(A)]Wµ(x;v) , (1)

where f is a weighted sum of the quark and gluon distri-
bution functions [5] and vµ ≡ pµ/|p| = (1,v).
At the expense of introducing a continuous set of aux-

iliary fieldsWβ(x;v) the effective field equations are local.
These equations of motion are then discretized in space-
time and v, and solved numerically in the temporal gauge,
A0 = 0. The discretization in v-space corresponds to in-
cluding only a finite set of the auxiliary fields Wβ(x;vi)
with 1 ≤ i ≤ NW . For details on the precise discretizations
used see refs. [8,9].

3 Numerical results

During the process of instability growth the soft gauge
fields get the energy for their growth from the hard par-
ticles. In an Abelian plasma this energy grows exponen-
tially until the energy in the soft field is of the same order
of magnitude as the energy remaining in the hard par-
ticles. As mentioned above in a non-Abelian plasma one
must rely on numerical simulations due to the presence
of strong gauge field self-interactions. Here I will present
results for a particle momentum distribution which has
been squeezed along the z-axis.

3.1 1+1-dimensional simulation

In fig. 2 I have plotted the time dependence of the en-
ergy density extracted from the hard particles obtained
in a 1+1-dimensional simulation of an anisotropic plasma
initialized with very weak random SU(2) color noise [7].
From this figure we see that after an initial period during
which various stable and unstable modes are competing
the system enters a period in which the energy density in
transverse magnetic fields, E(BT ) (green on-line dot-dot-
dashed line), grows exponentially with a growth rate of
the maximally unstable mode until γ∗t ∼ 9. In addition
we see that the energy density extracted from the hard
particles, E(HL) (solid black line), also grows exponen-
tially at the same rate during this time indicating that
energy extracted from the hard particles primarily goes
into producing large-amplitude chromo-magnetic fields.
At γ∗t ∼ 9 the system enters the “non-linear” regime

in which the three- and four-gluon couplings become
relevant and there is a brief slowdown in the growth of
all quantities shown. However, after some field rearrange-
ment the energy extracted from the particles and the
produced soft fields then all grow at approximately the
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Fig. 2. Time dependence of energy densities obtained from a
1+1-dimensional simulation. Here γ∗ is the growth rate for the
dominant unstable mode and Nw = 100, see [7,9] for details.

same rate. In this case, the fields would continue to grow
until the energy in the soft fields became on the order of
the energy in the hard particles, at which time the hard
particles would undergo large-angle deflections off the
soft fields. This picture, however, only holds in QED or
QCD restricted to 1+1-dimensional field configurations
(fields are independent of directions transverse to the
instability vector). As I will discuss in the next section
when the dependence of the chromo-electromagnetic
fields on the transverse directions is included the system’s
behavior changes dramatically in the non-linear regime.
However, in sect. 4 I will present visualizations which
can be produced from these (unrealistic and therefore
somewhat academic) 1+1-dimensional simulations.

3.2 3+1-dimensional simulation

As mentioned in the previous section the late-time behav-
ior of the system has a dependence on the dimensionality
of the fields assumed in the simulation. In fig. 3 I have plot-
ted the time dependence of the energy extracted from the
hard particles obtained in a 3+1-dimensional simulation of
an anisotropic plasma initialized with very weak random
color noise [9]. As can be seen from this figure atm∞t ∼ 60
there is a change from exponential to linear growth with
the late-time linear slope decreasing as NW is increased.
The first conclusion that can be drawn from this re-

sult is that within non-Abelian plasmas instabilities will
be less efficient at isotropizing the plasma than in Abelian
plasmas. However, from a theoretical perspective “satura-
tion” at the soft scale implies that one can still apply the
hard-loop effective theory self-consistently to understand
the behavior of the system at late times.

4 Visualizations of 1+1 results

In this section I present visualizations of the gauge-
invariant currents generated from our 1+1-dimensional
simulation. As mentioned previously, these are merely of
academic interest since the 1+1-dimensional simulations

Fig. 3. Comparison of the energy transferred from hard to
soft scales, E(HL), for 3+1-dimensional simulations withNw =
20, 100, 200 on 963, 883, 693 lattices. The inset shows the late-
time behavior on a linear scale.

do not seem to give the correct late-time behavior for non-
Abelian gauge groups. However, the visualizations are still
interesting in a pedagogical sense and allow one to easily
“see” the instabilities in action.

To make these visualizations I use the representation of
SU(2) vectors as O(3)/Z(2) vectors. At each time (vertical
axis in figs. 1, 4, and 5) I loop over the one spatial dimen-
sion (horizontal axis), map each SU(2) vector to an O(3)
vector, and normalize this vector such that it lies on a unit
sphere centered at zero. In order to remove the ambiguity
coming from the antipodal equivalence associated with the
Z(2) above I then take the absolute value of the vectors
obtained from the initial map so that the vectors all map
to the positive octant1. The vectors in this positive octant
of the unit sphere are then mapped directly to RGB colors.

In fig. 1 I have plotted the spacetime dependence of
the x-component of the induced current, jx, resulting from
our 1+1-dimensional simulations with periodic boundary
conditions. The bottom-most line in this figure contains
the small-amplitude random color initial condition which
was used. Proceeding upwards in time the system first
goes through a noisy stage in which different unstable and
stable modes are competing with the stable left and right
movers visible as diagonal lines resulting in a “criss-cross”
pattern. Next, the system goes through an Abelian phase
in which the current colors evolve almost independently
with a typical spatial wavelength given by the wavelength
of the maximally unstable mode [7,9]. However, once the
amplitudes of the color fields reach the non-Abelian scale
the field self-interactions start to induce “splittings” and
the currents begin color-oscillating in time2.

1 The 8 to 1 map obtained by taking the color-absolute value
is overkill in the sense that some vectors which should not be
identified as equivalent are; however, it is the simplest way to
implement the Z(2) invariance which is not properly captured
by a naive SU(2) to O(3) map.

2 The spatial direction of the current is also changing in time
but this cannot be gleaned from the visualizations presented
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Fig. 4. Visualization of the spacetime dependence of the color-
absolute value of the x-component of the induced current
obtained from a 1+1-dimensional simulation. Here all color
charges have been parallel transported to the leftmost site.

Fig. 5. Visualization of the spacetime dependence of the color-
absolute value of the z-component of the induced current ob-
tained from a 1+1-dimensional simulation.

Since our simulations are performed in the temporal
gauge, A0 = 0, fig. 1 is the best way to visualize the time
dependence of the gauge field since in this gauge the time-
parallel transporter is an identity matrix. However, for
assessing the spatial color correlations in the current it is
more appropriate to parallel transport the color matrices
to a fixed spatial point for comparison. In fig. 4 I show
the result of parallel transporting the same data shown in
fig. 1 to the left-most spatial lattice point (z = 0). As can
be seen, in the Abelian phase when the link variables are
nearly unity, there is little difference between figs. 1 and 4;
however, as the system approaches the non-Abelian phase
and the parallel transporters start to differ significantly
from unity the two figures are dramatically different. In
fig. 4 at late times, in fact, we can see that local regions
where the color is approximately in the same direction
emerge. The distance scale over which this occurs is the
“Abelianization correlation length”. This Abelianization
correlation length is finite and given approximately by the
spatial wavelength of the most unstable mode3.

here. This results in some visually interesting artifacts which
appear as “bubbly” vertical lines in fig. 1.

3 For a more precise determination of the Abelianization cor-
relation length see refs. [7,9].

Finally, I include, for comparison, a visualization of
the current parallel to the anisotropy vector, jz, in fig. 5.

5 Conclusions

The visualizations presented here are mostly novelty but
they do allow one to easily see the time evolution of the
system and therefore can provide important intuitive in-
formation. However, they can provide some insight into
the evolution of the system at times prior to when the cas-
cade to higher-momentum modes would set in within the
full 3+1-dimensional dynamics. Perhaps, when applied to
finer 3+1-dimensional simulations and using surface find-
ing routines they could even be used to better understand
the complicated color dynamics occurring at late times.
Looking forward, I note that the latest 3+1-

dimensional simulations [8,9] have only presented results
for distributions with a finite O(1–10) anisotropy and
these seem to imply that in this case the induced instabil-
ities will not have a significant effect on the hard particles.
This means, however, that due to the continued expansion
of the system the anisotropy will increase. It is therefore
important to understand the behavior of the system for
more extreme anisotropies. Additionally, it would be very
interesting to study the hard-loop dynamics in an expand-
ing system. Naively, one expects this to change the growth
from exp(τ) to exp(

√
τ) at short times but there is no clear

expectation of what will happen in the linear regime. The
short-time picture has been confirmed by early simula-
tions of instability development in an expanding system
of classical fields [12]. It would therefore be interesting to
incorporate expansion in collisionless Boltzmann-Vlasov
transport in the hard-loop regime and study the late-time
behavior in this case.
I note in closing that the application of this frame-

work to phenomenologically interesting couplings is sus-
pect since the results obtained strictly only apply at very
weak couplings; however, the success of hard-thermal-loop
perturbation theory at couplings as large as g ∼ 2 [11,13]
suggests that the non-equilibrium hard-loop theory might
also apply at these large couplings. For going to even larger
couplings perhaps colored particle-in-cell simulations [14]
could be used if they are extended to include collisions
and full 3+1 dynamics.
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was supported by the Academy of Finland, contract no. 77744,
and the Frankfurt Institute for Advanced Studies.
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